Question:

For a two-dimensional plane, the unit vectors \((\hat{e}_r,\hat{e}_\theta)\) of the polar coordinate system and \((\hat{i},\hat{j})\) of the cartesian coordinate system are related by \[ \hat{e}_r=\cos\theta\,\hat{i}+\sin\theta\,\hat{j}, \qquad \hat{e}_\theta=-\sin\theta\,\hat{i}+\cos\theta\,\hat{j}. \] Which one of the following is the CORRECT value of \(\dfrac{\partial(\hat{e}_r+\hat{e}_\theta){\partial\theta}\)?}

Show Hint

- In polar coordinates: \(\dfrac{\partial \hat{e}_r}{\partial\theta}=\hat{e}_\theta\) and \(\dfrac{\partial \hat{e}_\theta}{\partial\theta}=-\hat{e}_r\).
- Memorizing these two relations helps in curvilinear coordinate calculus and vector differentiation problems.
Updated On: Aug 26, 2025
  • \(1\)
  • \(\hat{e}_\theta\)
  • \(\hat{e}_r+\hat{e}_\theta\)
  • \(-\hat{e}_r+\hat{e}_\theta\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Step 1: Differentiate the basis vectors with respect to \(\theta\): \[ \frac{\partial\hat{e}_r}{\partial\theta} = -\sin\theta\,\hat{i}+\cos\theta\,\hat{j} = \hat{e}_\theta,\qquad \frac{\partial\hat{e}_\theta}{\partial\theta} = -\cos\theta\,\hat{i}-\sin\theta\,\hat{j} = -\hat{e}_r. \] Step 2: Therefore, \[ \frac{\partial(\hat{e}_r+\hat{e}_\theta)}{\partial\theta} = \frac{\partial\hat{e}_r}{\partial\theta} + \frac{\partial\hat{e}_\theta}{\partial\theta} = \hat{e}_\theta - \hat{e}_r = -\hat{e}_r+\hat{e}_\theta. \] \[ \boxed{-\hat{e}_r+\hat{e}_\theta} \]
Was this answer helpful?
0
0