Step 1: Write the given function.
\[
T(x,y) = \tfrac{1}{3}xy(x+y)
\]
Step 2: Compute gradient components.
The gradient is given by:
\[
\nabla T = \left(\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}\right)
\]
Differentiate with respect to $x$:
\[
\frac{\partial T}{\partial x} = \tfrac{1}{3} \left[ y(x+y) + xy(1) \right] = \tfrac{1}{3}( yx + y^2 + xy ) = \tfrac{1}{3}(2xy + y^2)
\]
Differentiate with respect to $y$:
\[
\frac{\partial T}{\partial y} = \tfrac{1}{3} \left[ x(x+y) + xy(1) \right] = \tfrac{1}{3}( x^2 + xy + xy ) = \tfrac{1}{3}(x^2 + 2xy)
\]
Step 3: Evaluate at the point (1,1).
\[
\frac{\partial T}{\partial x}\Big|_{(1,1)} = \tfrac{1}{3}(2\cdot1\cdot1 + 1^2) = \tfrac{1}{3}(3) = 1
\]
\[
\frac{\partial T}{\partial y}\Big|_{(1,1)} = \tfrac{1}{3}(1^2 + 2\cdot1\cdot1) = \tfrac{1}{3}(3) = 1
\]
Step 4: Magnitude of gradient.
\[
|\nabla T| = \sqrt{1^2 + 1^2} = \sqrt{2} \approx 1.41
\]
\[
\boxed{\text{Magnitude of gradient = 1.41}}
\]