Concept:
Velocity is the first derivative of position with respect to time.
Acceleration is the second derivative of position with respect to time.
Direction of velocity changes when velocity becomes zero.
Step 1: Find Velocity
Given: \[ x = 4t^3 - 3t \] \[ v = \frac{dx}{dt} = 12t^2 - 3 \]
Step 2: Check Statement (a)
Put \(x = 0\): \[ 4t^3 - 3t = 0 \Rightarrow t(4t^2 - 3) = 0 \] \[ t = 0,\quad t = \pm\sqrt{\frac{3}{4}} = \pm 0.866 \] Hence, at \(t = 0.866\), \(x = 0\). Statement (a) is correct
. Step 3: Check Direction Change of Velocity
Velocity becomes zero when: \[ 12t^2 - 3 = 0 \Rightarrow t^2 = \frac{1}{4} \Rightarrow t = \pm \frac{1}{2} \] At \(t = \frac{1}{2}\): \[ x = 4\left(\frac{1}{2}\right)^3 - 3\left(\frac{1}{2}\right) = \frac{1}{2} - \frac{3}{2} = -1 \] Thus, direction of velocity changes at \(x = -1\). Statement (c) is correct
and (d) is incorrect
. Statement (b) is incorrect
since velocity changes sign.
Step 4: Check Acceleration
\[ a = \frac{dv}{dt} = 24t \] Acceleration is zero at \(t=0\) and positive for \(t>0\). Thus, acceleration is non-negative
. Statement (e) is correct
.
Final Conclusion:
Correct statements are \(\boxed{a,\,c,\,e}\).
A bead P sliding on a frictionless semi-circular string... bead Q ejected... relation between $t_P$ and $t_Q$ is 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 