Step 1: Recall fracture mechanics relation.
For mode I fracture:
\[
K_{IC} = Y \, \sigma \, \sqrt{\pi a}
\]
where $a$ = crack length, $\sigma$ = stress, $Y$ = geometry factor (assumed same in both cases).
Step 2: Ratio of fracture toughness conditions.
For alloy A:
\[
K_{IC,A} = Y \, \sigma \, \sqrt{\pi a_A}
\]
For alloy B:
\[
K_{IC,B} = Y \, \sigma \, \sqrt{\pi a_B}
\]
Dividing:
\[
\frac{K_{IC,B}}{K_{IC,A}} = \sqrt{\frac{a_B}{a_A}}
\]
Step 3: Solve for crack length in alloy B.
\[
a_B = a_A \left(\frac{K_{IC,B}}{K_{IC,A}}\right)^2
\]
Substitute: $a_A = 0.4$ mm, $K_{IC,B} = 75$, $K_{IC,A} = 50$:
\[
a_B = 0.4 \left(\frac{75}{50}\right)^2 = 0.4 \times (1.5)^2
\]
\[
a_B = 0.4 \times 2.25 = 0.9 \, mm
\]
Final Answer:
\[
\boxed{0.9 \, mm}
\]