Question:

For $a > 0 , t \in\left(0, \frac{\pi}{2}\right) ,$ let $ x = \sqrt{a^{\sin^{-1}t}} $ and $y = \sqrt{a^{\cos^{-1}t}},$ Then $ 1+ \left(\frac{dy}{dx}\right)^{2} $ equals :

Updated On: Jul 6, 2022
  • $\frac{x^2}{y^2}$
  • $\frac{y^2}{x^2}$
  • $\frac{x^2 + y^2 }{y^2}$
  • $\frac{x^2 + y^2 }{x^2}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Let $x = \sqrt{a^{\sin^{-1}t }}$ $\Rightarrow x^{2} = a^{\sin^{-1}t} \Rightarrow 2 \log x = \sin^{-1} t . \log a$ $ \Rightarrow \frac{2}{x} = \frac{\log a}{\sqrt{1-t^{2}}} . \frac{dt}{dx} $ $\Rightarrow \frac{2\sqrt{1-t^{2}}}{x \log a} = \frac{dt}{dx} $ ....(1) Now, let $y = \sqrt{a^{\cos^{-1}t}} $ $\Rightarrow 2 \log y = \cos^{-1} t . \log a$ $ \Rightarrow \frac{2}{y} . \frac{dy}{dx} = \frac{-\log a}{\sqrt{1-t^{2}}} . \frac{dt}{dx} $ $\Rightarrow \frac{2}{y} . \frac{dy}{dx} = \frac{-\log a}{\sqrt{1-t^{2}} } \times \frac{2\sqrt{1-t^{2}}}{x \log a} $ (from (1) $\Rightarrow \frac{dy}{dx} = - \frac{y}{x}$ Hence , $ 1+ \left(\frac{dy}{dx}\right)^{2} = 1 + \left(\frac{-y}{x}\right)^{2} = \frac{x^{2} +y^{2}}{x^{2}} $
Was this answer helpful?
0
0

Top Questions on Continuity and differentiability

View More Questions

Concepts Used:

Continuity & Differentiability

Definition of Differentiability

f(x) is said to be differentiable at the point x = a, if the derivative f ‘(a) be at every point in its domain. It is given by

Differentiability

Definition of Continuity

Mathematically, a function is said to be continuous at a point x = a,  if

It is implicit that if the left-hand limit (L.H.L), right-hand limit (R.H.L), and the value of the function at x=a exist and these parameters are equal to each other, then the function f is said to be continuous at x=a.

Continuity

If the function is unspecified or does not exist, then we say that the function is discontinuous.