To solve this question, we need to find the focal length of a plano-convex lens with refractive index \( n \) and radius of curvature \( R \).
1. Lens Maker's Formula:
The general lens maker's formula for focal length \( f \) is:
\[ \frac{1}{f} = (n - 1)\left( \frac{1}{R_1} - \frac{1}{R_2} \right) \]
2. For a Plano-Convex Lens:
- One side is plane \( \Rightarrow R_1 = \infty \)
- One side is convex \( \Rightarrow R_2 = -R \)
Now applying this to the formula:
\[ \frac{1}{f} = (n - 1)\left( \frac{1}{\infty} - \left( -\frac{1}{R} \right) \right) = (n - 1)\left( \frac{1}{R} \right) \]
3. Solving for \( f \):
\[ f = \frac{R}{n - 1} \]
Final Answer:
Option (D) \( f = \frac{R}{n - 1} \) is correct.