Let \( x \) be the coded variable such that 2013 = 0:
So years become: \( x = -2, -1, 0, 1, 2, 3 \)
Let \( y \) = production values.
Create a table:
\[
\begin{array}{c|c|c|c}
\text{Year} & x & y & xy \\
\hline
2011 & -2 & 210 & -420 \\
2012 & -1 & 225 & -225 \\
2013 & 0 & 275 & 0 \\
2014 & 1 & 220 & 220 \\
2015 & 2 & 240 & 480 \\
2016 & 3 & 235 & 705 \\
\end{array}
\]
Step 1: Compute sums:
\[
\sum x = 3, \quad \sum y = 1405, \quad \sum xy = 760, \quad \sum x^2 = 19
\]
Number of terms: \( n = 6 \)
Step 2: Apply least squares formula:
The equation of the trend line is:
\[
y = a + bx
\]
Calculate slope and intercept:
\[
b = \frac{\sum xy}{\sum x^2} = \frac{760}{19} = 40 \\
a = \frac{\sum y}{n} = \frac{1405}{6} \approx 234.17
\]
So, the trend equation is:
\[
y = 234.17 + 40x
\]