Given polynomial:
\[ p(x) = 3x^2 + x - 10 \]
\[ 3x^2 + x - 10 = 0 \]
Find two numbers whose product is \( 3 \times (-10) = -30 \) and whose sum is 1. These numbers are 6 and -5: \[ 3x^2 + 6x - 5x - 10 = 0 \Rightarrow 3x(x + 2) - 5(x + 2) = 0 \Rightarrow (3x - 5)(x + 2) = 0 \]
Therefore, the zeroes are:
\[ 3x - 5 = 0 \Rightarrow x = \frac{5}{3}, \quad x + 2 = 0 \Rightarrow x = -2 \] \[ \text{Zeroes: } \alpha = \frac{5}{3}, \quad \beta = -2 \]
General form: \( ax^2 + bx + c \), where: \[ a = 3,\quad b = 1,\quad c = -10 \]
\[ \alpha + \beta = \frac{5}{3} + (-2) = \frac{5}{3} - \frac{6}{3} = -\frac{1}{3} \] From coefficients: \[ -\frac{b}{a} = -\frac{1}{3} \] ✅ Verified
\[ \alpha \cdot \beta = \frac{5}{3} \cdot (-2) = -\frac{10}{3} \] From coefficients: \[ \frac{c}{a} = \frac{-10}{3} \] ✅ Verified
Let \( \alpha, \beta \) be the roots of the equation \( x^2 - ax - b = 0 \) with \( \text{Im}(\alpha) < \text{Im}(\beta) \). Let \( P_n = \alpha^n - \beta^n \). If \[ P_3 = -5\sqrt{7}, \quad P_4 = -3\sqrt{7}, \quad P_5 = 11\sqrt{7}, \quad P_6 = 45\sqrt{7}, \] then \( |\alpha^4 + \beta^4| \) is equal to:
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।