Find the values of other five trigonometric functions if \(tan\, x=-\frac{5}{12}\), x lies in second quadrant.
\(tan\,x=-\frac{5}{12}\)
\(cot\,x\,=\frac{1}{tan\,x}=\frac{1}{(-\frac{5}{12})}=-\frac{12}{5}\)
\(1+tan^2x=sec^2x\)
\(⇒1+(-\frac{5}{12})^2=sec^2x\)
\(⇒1+\frac{25}{144}=sec^2x\)
\(⇒\frac{169}{144}=sec^2x\)
\(∴sec\,x=±\frac{13}{12}\)
Since x lies in the 2nd quadrant, the value of sec x will be negative.
\(sin\,x=-\frac{13}{12}\)
\(cos\,x=\frac{1}{sec\,x}=\frac{1}{(-\frac{13}{12})}=-\frac{12}{13}\)
\(tan\,x=\frac{sin\,x}{cos\,\,x}\)
\(⇒-\frac{5}{12}=\frac{sin\,x}{(-\frac{12}{13})}\)
\(⇒sin\,x=(-\frac{5}{12})×(-\frac{12}{13})={\frac{5}{13}}\)
\(cosec\,x=\frac{1}{sin\,x}=\frac{1}{(\frac{5}{13})}=\frac{13}{5}\)
Let \( M \) and \( m \) respectively be the maximum and the minimum values of \( f(x) = \begin{vmatrix} 1 + \sin^2x & \cos^2x & 4\sin4x \\ \sin^2x & 1 + \cos^2x & 4\sin4x \\ \sin^2x & \cos^2x & 1 + 4\sin4x \end{vmatrix}, \quad x \in \mathbb{R} \) for \( x \in \mathbb{R} \). Then \( M^4 - m^4 \) is equal to:
Draw the Lewis structures for the following molecules and ions: \(H_2S\), \(SiCl_4\), \(BeF_2\), \(CO_3^{2-}\) , \(HCOOH\)
| λ (nm) | 500 | 450 | 400 |
|---|---|---|---|
| v × 10–5(cm s–1) | 2.55 | 4.35 | 5.35 |