Find the values of other five trigonometric functions if \(tan\, x=-\frac{5}{12}\), x lies in second quadrant.
\(tan\,x=-\frac{5}{12}\)
\(cot\,x\,=\frac{1}{tan\,x}=\frac{1}{(-\frac{5}{12})}=-\frac{12}{5}\)
\(1+tan^2x=sec^2x\)
\(⇒1+(-\frac{5}{12})^2=sec^2x\)
\(⇒1+\frac{25}{144}=sec^2x\)
\(⇒\frac{169}{144}=sec^2x\)
\(∴sec\,x=±\frac{13}{12}\)
Since x lies in the 2nd quadrant, the value of sec x will be negative.
\(sin\,x=-\frac{13}{12}\)
\(cos\,x=\frac{1}{sec\,x}=\frac{1}{(-\frac{13}{12})}=-\frac{12}{13}\)
\(tan\,x=\frac{sin\,x}{cos\,\,x}\)
\(⇒-\frac{5}{12}=\frac{sin\,x}{(-\frac{12}{13})}\)
\(⇒sin\,x=(-\frac{5}{12})×(-\frac{12}{13})={\frac{5}{13}}\)
\(cosec\,x=\frac{1}{sin\,x}=\frac{1}{(\frac{5}{13})}=\frac{13}{5}\)
Figures 9.20(a) and (b) refer to the steady flow of a (non-viscous) liquid. Which of the two figures is incorrect ? Why ?