Find the values of other five trigonometric functions if \(tan\, x=-\frac{5}{12}\), x lies in second quadrant.
\(tan\,x=-\frac{5}{12}\)
\(cot\,x\,=\frac{1}{tan\,x}=\frac{1}{(-\frac{5}{12})}=-\frac{12}{5}\)
\(1+tan^2x=sec^2x\)
\(⇒1+(-\frac{5}{12})^2=sec^2x\)
\(⇒1+\frac{25}{144}=sec^2x\)
\(⇒\frac{169}{144}=sec^2x\)
\(∴sec\,x=±\frac{13}{12}\)
Since x lies in the 2nd quadrant, the value of sec x will be negative.
\(sin\,x=-\frac{13}{12}\)
\(cos\,x=\frac{1}{sec\,x}=\frac{1}{(-\frac{13}{12})}=-\frac{12}{13}\)
\(tan\,x=\frac{sin\,x}{cos\,\,x}\)
\(⇒-\frac{5}{12}=\frac{sin\,x}{(-\frac{12}{13})}\)
\(⇒sin\,x=(-\frac{5}{12})×(-\frac{12}{13})={\frac{5}{13}}\)
\(cosec\,x=\frac{1}{sin\,x}=\frac{1}{(\frac{5}{13})}=\frac{13}{5}\)
If \( \alpha>\beta>\gamma>0 \), then the expression \[ \cot^{-1} \beta + \left( \frac{1 + \beta^2}{\alpha - \beta} \right) + \cot^{-1} \gamma + \left( \frac{1 + \gamma^2}{\beta - \gamma} \right) + \cot^{-1} \alpha + \left( \frac{1 + \alpha^2}{\gamma - \alpha} \right) \] is equal to:
Find the mean and variance for the following frequency distribution.
Classes | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
Frequencies | 5 | 8 | 15 | 16 | 6 |