The vector \( \mathbf{u} = (1, 2, 3) \). The equation \( c \mathbf{u} = 3 \) is ambiguous, as a scalar times a vector cannot equal a scalar. Assume it means the magnitude of the scaled vector equals 3:
\[
|c \mathbf{u}| = 3.
\]
Compute the magnitude of \( \mathbf{u} \):
\[
|\mathbf{u}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}.
\]
Then:
\[
|c| \cdot |\mathbf{u}| = 3 \quad \Rightarrow \quad |c| \cdot \sqrt{14} = 3 \quad \Rightarrow \quad |c| = \frac{3}{\sqrt{14}}.
\]
Thus:
\[
c = \pm \frac{3}{\sqrt{14}}.
\]