Find the value of x, y, and z from the following equation:
I.\(\begin{bmatrix} 4&3&\\x&5\end{bmatrix}=\begin{bmatrix}y&z\\1&5\end{bmatrix}\)
II. \(\begin{bmatrix}x+y&2\\5+z&xy\end{bmatrix}=\begin{bmatrix}6&2\\5&8\end{bmatrix}\)
III. \(\begin{bmatrix}x+y+z\\x+z\\y+z\end{bmatrix}=\begin{bmatrix}9\\5\\7\end{bmatrix}\)
(i) \(\begin{bmatrix} 4&3&\\x&5\end{bmatrix}=\begin{bmatrix}y&z\\1&5\end{bmatrix}\)As the given matrices are equal, their corresponding elements are also equal.
Comparing the corresponding elements, we get :x = 1, y = 4, and z = 3
(ii) \(\begin{bmatrix}x+y&2\\5+z&xy\end{bmatrix}=\begin{bmatrix}6&2\\5&8\end{bmatrix}\) As the given matrices are equal, their corresponding elements are also equal.
Comparing the corresponding elements, we get:
x + y = 6, xy = 8, 5 + z = 5
Now, 5 + z = 5 \(\Rightarrow\) z = 0
We know that:
(x − y)2= (x + y)2− 4xy
\(\Rightarrow\) (x − y)2 = 36 − 32 = 4
\(\Rightarrow\) x − y = ±2
Now, when x − y = 2 and x + y = 6, we get x= 4 and y = 2
When x − y = − 2 and x + y = 6, we get x = 2 and y = 4
∴x = 4, y = 2, and z = 0 or x = 2, y = 4, and z = 0
(iii) \(\begin{bmatrix}x+y+z\\x+z\\y+z\end{bmatrix}=\begin{bmatrix}9\\5\\7\end{bmatrix}\) As the two matrices are equal, their corresponding elements are also equal.
Comparing the corresponding elements, we get:
x + y + z = 9 … (1)
x + z = 5 … (2)
y + z = 7 … (3)
From (1) and (2), we have:
y + 5 = 9
\(\Rightarrow\) y = 4
Then, from (3), we have:
4 + z = 7
\(\Rightarrow\) z = 3
∴ x + z = 5
\(\Rightarrow\) x = 2
∴ x = 2, y = 4, and z = 3
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.