Find the value of $\log_{20} 100 + \log_{20} 1000 + \log_{20} 10000 \quad \bigl[\textit{Assume that } \log 2 = 0.3\bigr].$
$70/13$
Use change of base: $\log_{20}N=\dfrac{\log N}{\log 20}$. Since $\log 20=\log(2\cdot 10)=\log 2+1=1.3$, \[ \log_{20}100+\log_{20}1000+\log_{20}10000 =\frac{2+3+4}{1.3} =\frac{9}{1.3}=\frac{90}{13}. \]
Find the missing code:
L1#1O2~2, J2#2Q3~3, _______, F4#4U5~5, D5#5W6~6