Question:

Find the value of  $\log_{20} 100 + \log_{20} 1000 + \log_{20} 10000 \quad \bigl[\textit{Assume that } \log 2 = 0.3\bigr].$ 
 

Show Hint

For $\log_a b$ with common logs, use $\log_a b=\frac{\log b}{\log a}$. Precompute $\log a$ once.
Updated On: Aug 20, 2025
  • $90/13$
  • $80/13$
  • $110/13$
  • $70/13$ 

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation


Use change of base: $\log_{20}N=\dfrac{\log N}{\log 20}$. Since $\log 20=\log(2\cdot 10)=\log 2+1=1.3$, \[ \log_{20}100+\log_{20}1000+\log_{20}10000 =\frac{2+3+4}{1.3} =\frac{9}{1.3}=\frac{90}{13}. \] 

Was this answer helpful?
0
0