The equation \( 3x^2 + kxy + 2y^2 = 0 \) represents a pair of lines. Let one line be \( 2x + y = 0 \), i.e., \( y = -2x \).
Substitute \( y = -2x \) into \( 3x^2 + kxy + 2y^2 = 0 \):
\[ 3x^2 + kx(-2x) + 2(-2x)^2 = 0 \Rightarrow 3x^2 - 2kx^2 + 2 \cdot 4x^2 = 0 \Rightarrow (3 - 2k + 8)x^2 = (11 - 2k)x^2 = 0. \] Since \( x^2 \neq 0 \),
\[ 11 - 2k = 0 \Rightarrow 2k = 11 \Rightarrow k = \frac{11}{2}. \] Answer: \( k = \frac{11}{2} \).
