Given:
- Points \(O = (0,0)\) and \(P = (8,6)\)
- Point \(R = (4.8, y)\) divides the line segment \(OP\) in some ratio \(k : 1\)
Step 1: Use section formula
If point \(R\) divides segment \(OP\) in ratio \(k : 1\), coordinates of \(R\) are:
\[
\left( \frac{k \times x_2 + 1 \times x_1}{k + 1}, \frac{k \times y_2 + 1 \times y_1}{k + 1} \right)
\]
Where \(O = (x_1, y_1) = (0,0)\) and \(P = (x_2, y_2) = (8,6)\).
Step 2: Set x-coordinate equal to 4.8 and solve for \(k\)
\[
4.8 = \frac{8k + 0}{k + 1} = \frac{8k}{k + 1}
\]
Multiply both sides by \(k + 1\):
\[
4.8(k + 1) = 8k \implies 4.8k + 4.8 = 8k
\]
\[
8k - 4.8k = 4.8 \implies 3.2k = 4.8 \implies k = \frac{4.8}{3.2} = 1.5
\]
Step 3: Find \(y\) using \(k = 1.5\)
\[
y = \frac{6k + 0}{k + 1} = \frac{6 \times 1.5}{1.5 + 1} = \frac{9}{2.5} = 3.6
\]
Final Answer:
- The ratio in which \(R\) divides \(OP\) is \(1.5 : 1\) or \(\frac{3}{2} : 1\).
- The value of \(y = 3.6\).
\[
\boxed{
\text{Ratio} = \frac{3}{2} : 1, \quad y = 3.6
}
\]