The given curve is y=\(\frac{x-1}{x-2}\).
\(\frac{dy}{dx}\)=\(\frac {(x-2)(1)-(x-1)(1)}{(x-2)^2}\)
=\(\frac {x-2-x+1}{(x-2)^2}\)=-\(\frac{-1}{(x-2)^2}\)
Thus, the slope of the tangent at x = 10 is given by,
\((\frac{\text{dy}}{\text{dx}}) \bigg]_{x=10}\)\(= \frac{-1}{(x-2)^2}\bigg] _{ x=10}\)=-\(\frac{-1}{(10-2)^2}\)=\(\frac{-1}{64}\)
Hence, the slope of the tangent at x = 10 is \(\frac{-1}{64}\)
m×n = -1
