The given curve is y=\(\frac{x-1}{x-2}\).
\(\frac{dy}{dx}\)=\(\frac {(x-2)(1)-(x-1)(1)}{(x-2)^2}\)
=\(\frac {x-2-x+1}{(x-2)^2}\)=-\(\frac{-1}{(x-2)^2}\)
Thus, the slope of the tangent at x = 10 is given by,
\((\frac{\text{dy}}{\text{dx}}) \bigg]_{x=10}\)\(= \frac{-1}{(x-2)^2}\bigg] _{ x=10}\)=-\(\frac{-1}{(10-2)^2}\)=\(\frac{-1}{64}\)
Hence, the slope of the tangent at x = 10 is \(\frac{-1}{64}\)
If \( x = a(0 - \sin \theta) \), \( y = a(1 + \cos \theta) \), find \[ \frac{dy}{dx}. \]
Find the least value of ‘a’ for which the function \( f(x) = x^2 + ax + 1 \) is increasing on the interval \( [1, 2] \).
If f (x) = 3x2+15x+5, then the approximate value of f (3.02) is
m×n = -1