Use Fermat’s Little Theorem: If \( p \) is prime and \( a \not\equiv 0 \pmod{p} \), then
\[
a^{p-1} \equiv 1 \pmod{p}
\]
Here, \( a = 2 \), \( p = 131 \Rightarrow 2^{130} \equiv 1 \pmod{131} \)
Now write:
\[
1040 = 130 \times 8 \Rightarrow 2^{1040} = (2^{130})^8 \equiv 1^8 \equiv \boxed{1} \pmod{131}
\]