To find the positive real root of the equation \( x^3 - x - 3 = 0 \) using the Newton-Raphson method, we begin by defining:
The function \( f(x) = x^3 - x - 3 \) and its derivative \( f'(x) = 3x^2 - 1 \).
Starting with an initial guess \( x_0 = 2 \), the Newton-Raphson iteration formula is given by:
\( x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \).
Step 1:
Calculate \( x_1 \):
Step 2:
Calculate \( x_2 \):
Rounding \( x_2 \) to two decimal places, we get \( \underline{1.67} \).
Consider two identical tanks with a bottom hole of diameter \( d \). One tank is filled with water and the other tank is filled with engine oil. The height of the fluid column \( h \) is the same in both cases. The fluid exit velocity in the two tanks are \( V_1 \) and \( V_2 \). Neglecting all losses, which one of the following options is correct?
