Step 1: Slope of given tangent.
Equation of tangent line:
\[
y = x - 11 $\Rightarrow$ \text{slope} = 1.
\]
Step 2: Differentiate the curve.
Curve:
\[
y = x^3 - 11x + 5
\]
\[
\frac{dy}{dx} = 3x^2 - 11.
\]
Step 3: Equating slope.
At tangent point, slope $= 1$:
\[
3x^2 - 11 = 1
\]
\[
3x^2 = 12 $\Rightarrow$ x^2 = 4 $\Rightarrow$ x = \pm 2.
\]
Step 4: Find corresponding $y$ values.
For $x=2$:
\[
y = 2^3 - 11(2) + 5 = 8 - 22 + 5 = -9.
\]
For $x=-2$:
\[
y = (-2)^3 - 11(-2) + 5 = -8 + 22 + 5 = 19.
\]
Step 5: Check if points lie on tangent line.
Tangent: $y = x - 11$.
For $(2,-9)$: RHS = $2-11=-9$, ✅ lies on line.
For $(-2,19)$: RHS = $-2-11=-13 \neq 19$, ❌ not valid.
Final Answer: \[ \boxed{(2,-9)} \]