Find the perimeter of the rectangle whose length is \(40\) \(cm\) and a diagonal is \(41\) \(cm\).

In a rectangle, all interior angles are of \(90\degree\) measure.
Therefore, Pythagoras theorem can be applied here.
\((41)^2= (40)^2 + x^2 \)
\(\Rightarrow\)\(1681\) = \(1600 + x\)
\(2 \times2= 1681 -1600\) = \(81\)
\(x = 9 \) \(cm\)
\(Perimeter = 2(Length + Breadth)\)
= \(2(x + 40)\)
= \(2 (9 + 40)\)
= \(98\) \(cm\)
एक कातळकोन त्रिकोणामध्ये कातळकोन करणाया बाजू 9 सेमी व 12 सेमी आहे, तर त्या त्रिकोणाच्या कर्णाची लांबी काय असेल?

Using laws of exponents, simplify and write the answer in exponential form:
(i) 32 × 34 × 38 (ii) 615 ÷ 610 (iii) a3 × a2 (iv) 7x×72 (v) (52) ÷ 53 (vi) 25 × 55 (vii) a4 × b4 (viii) (34)3(ix) (220 ÷ 215)×23 (x) 8t ÷ 82