A point particle of charge \( Q \) is located at \( P \) along the axis of an electric dipole 1 at a distance \( r \) as shown in the figure. The point \( P \) is also on the equatorial plane of a second electric dipole 2 at a distance \( r \). The dipoles are made of opposite charge \( q \) separated by a distance \( 2a \). For the charge particle at \( P \) not to experience any net force, which of the following correctly describes the situation?

A point charge \( q \) is placed at a distance \( d \) above an infinite, grounded conducting plate placed on the \( xy \)-plane at \( z = 0 \).
The electrostatic potential in the \( z > 0 \) region is given by \( \phi = \phi_1 + \phi_2 \), where:
\( \phi_1 = \frac{1}{4 \pi \epsilon_0} \cdot \frac{q}{\sqrt{x^2 + y^2 + (z - d)^2}} \)
\( \phi_2 = - \frac{1}{4 \pi \epsilon_0} \cdot \frac{q}{\sqrt{x^2 + y^2 + (z + d)^2}} \)
Which of the following option(s) is/are correct?
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
