Separate variables:
\[
e^{-2y} \, dy = \cos x \, dx.
\]
Integrate:
\[
\int e^{-2y} \, dy = \int \cos x \, dx.
\]
\[
-\frac{1}{2} e^{-2y} = \sin x + c.
\]
\[
e^{-2y} = -2 \sin x - 2c = -2 \sin x + C, \quad y = -\frac{1}{2} \ln (-2 \sin x + C).
\]
Apply condition \( x = \frac{\pi}{6} \), \( y = 0 \):
\[
\sin \frac{\pi}{6} = \frac{1}{2}, \quad e^{-2 \cdot 0} = 1 = -2 \cdot \frac{1}{2} + C \Rightarrow 1 = -1 + C \Rightarrow C = 2.
\]
\[
e^{-2y} = -2 \sin x + 2 = 2 (1 - \sin x), \quad y = -\frac{1}{2} \ln (2 (1 - \sin x)).
\]
Answer: \( y = -\frac{1}{2} \ln (2 (1 - \sin x)) \).