Question:

Find the particular solution of the differential equation: \[ \frac{dy}{dx} = e^{2y} \cos{x}, \quad \text{when} \quad x = \frac{\pi}{6}, \, y = 0 \]

Show Hint

When solving differential equations, separate the variables and integrate both sides. Apply initial conditions to find the constant of integration.
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Separate the variables in the given differential equation: \[ \frac{dy}{dx} = e^{2y} \cos{x} \] Rearrange to separate the variables: \[ \frac{1}{e^{2y}} \, dy = \cos{x} \, dx \] Step 2: Integrate both sides: \[ \int \frac{1}{e^{2y}} \, dy = \int \cos{x} \, dx \] The left side: \[ \int \frac{1}{e^{2y}} \, dy = \int e^{-2y} \, dy = -\frac{1}{2} e^{-2y} \] The right side: \[ \int \cos{x} \, dx = \sin{x} \] So, we have: \[ -\frac{1}{2} e^{-2y} = \sin{x} + C \] Step 3: Apply the initial condition \( x = \frac{\pi}{6}, y = 0 \): \[ -\frac{1}{2} e^{0} = \sin{\frac{\pi}{6}} + C \] \[ -\frac{1}{2} = \frac{1}{2} + C \] \[ C = -1 \] Step 4: Substitute \( C = -1 \) into the equation: \[ -\frac{1}{2} e^{-2y} = \sin{x} - 1 \] \[ e^{-2y} = 2(1 - \sin{x}) \] Step 5: Take the natural logarithm: \[ -2y = \ln{(2(1 - \sin{x}))} \] \[ y = -\frac{1}{2} \ln{(2(1 - \sin{x}))} \] Thus, the particular solution is: \[ \boxed{y = -\frac{1}{2} \ln{(2(1 - \sin{x}))}} \]
Was this answer helpful?
0
0