Step 1: Separate the variables in the given differential equation:
\[
\frac{dy}{dx} = e^{2y} \cos{x}
\]
Rearrange to separate the variables:
\[
\frac{1}{e^{2y}} \, dy = \cos{x} \, dx
\]
Step 2: Integrate both sides:
\[
\int \frac{1}{e^{2y}} \, dy = \int \cos{x} \, dx
\]
The left side:
\[
\int \frac{1}{e^{2y}} \, dy = \int e^{-2y} \, dy = -\frac{1}{2} e^{-2y}
\]
The right side:
\[
\int \cos{x} \, dx = \sin{x}
\]
So, we have:
\[
-\frac{1}{2} e^{-2y} = \sin{x} + C
\]
Step 3: Apply the initial condition \( x = \frac{\pi}{6}, y = 0 \):
\[
-\frac{1}{2} e^{0} = \sin{\frac{\pi}{6}} + C
\]
\[
-\frac{1}{2} = \frac{1}{2} + C
\]
\[
C = -1
\]
Step 4: Substitute \( C = -1 \) into the equation:
\[
-\frac{1}{2} e^{-2y} = \sin{x} - 1
\]
\[
e^{-2y} = 2(1 - \sin{x})
\]
Step 5: Take the natural logarithm:
\[
-2y = \ln{(2(1 - \sin{x}))}
\]
\[
y = -\frac{1}{2} \ln{(2(1 - \sin{x}))}
\]
Thus, the particular solution is:
\[
\boxed{y = -\frac{1}{2} \ln{(2(1 - \sin{x}))}}
\]