Thegivendifferentialequationis
\[
\frac{dy}{dx}+y\cotx=2x.
\]
Theintegratingfactor(IF)iscalculatedas:
\[
IF=e^{\int\cotx\,dx}=\sinx.
\]
Multiplyingthroughby\(\sinx\),theequationbecomes:
\[
\sinx\frac{dy}{dx}+y\sinx\cotx=2x\sinx\quad\Rightarrow\quad\frac{d}{dx}(y\sinx)=2x\sinx.
\]
Integratingbothsides:
\[
y\sinx=\int2x\sinx\,dx.
\]
Usingintegrationbyparts:
\[
\int2x\sinx\,dx=-2x\cosx+2\int\cosx\,dx=-2x\cosx+2\sinx.
\]
Thus:
\[
y\sinx=-2x\cosx+2\sinx+C.
\]
Substitute\(x=\frac{\pi}{2},y=0\)tofind\(C\):
\[
0\cdot\sin\left(\frac{\pi}{2}\right)=-2\cdot\frac{\pi}{2}\cdot\cos\left(\frac{\pi}{2}\right)+2\cdot\sin\left(\frac{\pi}{2}\right)+C\quad\Rightarrow\quadC=-2.
\]
Theparticularsolutionis:
\[
y=\frac{-2x\cosx+2\sinx-2}{\sinx}.
\]