Find the particular solution of the differential equation \((1+e^{2x})dy+(1+y^2)e^xdx=0\), given that \(y=1 \) when \(x=0\)
\((1+e^{2x})dy+(1+y^2)e^xdx=0\)
\(⇒\frac {dy}{1+y^2}+\frac {e^xdx}{1+e^{2x}}=0\)
Integrating both sides,we get:
\(tan^{-1}y+∫\frac {e^xdx}{1+e^{2x}}=C\) ...(1)
\(Let\ e^x=t⇒e^{2x}=t^2.\)
\(⇒\frac {d}{dx}(e^x)=\frac {dt}{dx}\)
\(⇒e^x=\frac {dt}{dx}\)
\(⇒e^xdx=dt\)
Substituting these values in equation (1), we get:
\(tan^{-1}y+∫\frac {dt}{1+t^2}=C\)
\(⇒tan^{-1}y+tan^{-1}t=C\)
\(⇒tan^{-1}y+tan^{-1} (e^x)=C\) ...(2)
Now, y=1 at x=0.
Therefore, equation (2) becomes:
\(tan^{-1}1+tan^{-1} 1=C\)
\(⇒\frac \pi4+\frac \pi4=C\)
\(⇒C=\frac \pi2\)
Substituting \(\frac \pi2\) in equation (2), becomes:
\(tan^{-1}y+tan^{-1}(e^x)=\frac \pi2\)
This is the required particular solution of the given differential equation.
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2\ is :