(i) \(7, 13, 19, ..…, 205\)
For this A.P., \(a = 7 \) and \(d = a_2 − a_1 = 13 − 7 = 6\)
Let there are \(n\) terms in this A.P. \(a_n = 205\)
We know that \(a_n = a + (n − 1) d\)
Therefore, \(205 = 7 + (n − 1) 6\)
\(198 = (n − 1) 6\)
\(33 = (n − 1) \)
\(n = 34\)
Therefore, this given series has 34 terms in it.
(ii) \(18,15\frac 12 ,13, ..…,−47\) For this A.P.,
\(a = 18\)
\(d = a_2-a_1\)
\(d= 15 \frac 12 -18\)
\(d = \frac {31}{2} - 18\)
\(d= \frac {31-36}{2}= -\frac 52\)
Let there are \(n\) terms in this A.P.
Therefore, \(a_n = −47 \)and we know that,
\(a_n = a +(n-1)d\)
\(-47 = 18 + (n-1)(-\frac 52)\)
\(-47-18 = (n-1)(-\frac 52)\)
\(-65 = (n-1)(-\frac 52)\)
\(\frac {-65 \times 2}{-5} = n-1\)
\(n-1 = \frac {-130}{-5}\)
\(n-1 = 26\)
\(n = 27\)
Therefore, this given A.P. has 27 terms in it.
Let $a_1, a_2, a_3, \ldots$ be an AP If $a_7=3$, the product $a_1 a_4$ is minimum and the sum of its first $n$ terms is zero, then $n !-4 a_{n(n+2)}$ is equal to :
Let $a_1, a_2, \ldots, a_n$ be in AP If $a_5=2 a_7$ and $a_{11}=18$, then $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots+\frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ is equal to
"जितेंद्र नार्गे जैसे गाइड के साथ किसी भी पर्यटन स्थल का भ्रमण अधिक आनंददायक और यादगार हो सकता है।" इस कथन के समर्थन में 'साना साना हाथ जोड़ि .......' पाठ के आधार पर तर्कसंगत उत्तर दीजिए।
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।
There is a circular park of diameter 65 m as shown in the following figure, where AB is a diameter. An entry gate is to be constructed at a point P on the boundary of the park such that distance of P from A is 35 m more than the distance of P from B. Find distance of point P from A and B respectively.