We know that for a quadratic equation \(ax^2 + bx + c = 0\), discriminant is \(b^2 − 4ac\).
(i) \(2x^2 −3x + 5 = 0\)
Comparing this equation with \(ax^2 + bx + c = 0\), we obtain
a = 2, b = −3, c = 5
Discriminant = \(b^2 − 4ac\) =\((− 3)2 − 4 (2) (5)\)= \(9 – 40\) = \(−31\)
As \(b^2 − 4ac < 0\), Therefore, no real root is possible for the given equation.
(ii) \(3x^2 -4\sqrt3 x +4 =0\)
Comparing this equation with \(ax^2 + bx + c = 0\), we obtain
a=\(3\) , b= \(4\sqrt3\), c=\(4\)
Discriminant =\(b^2 -4ac\) = \((-4\sqrt3)^2 -4(3)(4)\) = \(48 − 48\) = 0
As \(b^2 − 4ac\) = 0, Therefore, real roots exist for the given equation and they are equal to each other.
And the roots will be \(−\frac{𝑏}{2𝑎}\) and \(−\frac{𝑏}{2𝑎}\) .
\(−\frac{𝑏}{2𝑎}\)= \(-\frac{(-4\sqrt3)}{ 2 \times 3 }\)=\(\frac{ 4\sqrt3}{6}\) = \(\frac{2\sqrt3 }{3}\) = \(\frac{2}{ \sqrt3}\)
Therefore, the roots are \(\frac{2}{ \sqrt3}\) and \(\frac{2}{ \sqrt3}\) .
(iii) \(2x^2 − 6x + 3 = 0\)
Comparing this equation with \(ax^2 + bx + c = 0\), we obtain
a = 2, b = −6, c = 3
Discriminant = \(b^2 − 4ac\)= \((− 6)2 − 4 (2) (3)\)= \(36 − 24\) = \(12\)
As \(b^2 − 4ac\)\(> 0\), Therefore, distinct real roots exist for this equation as follows.
x= \(-\frac{b±\sqrt{b^2 -4ac} }{ 2a}\)
= \(-\frac{(-6) ± \sqrt{(-6)^2 - 4(2)(3)}}{ 2(2)}\)
= \(\frac{6±\sqrt{12}}{4 }\)= \(\frac{6 ± 2\sqrt 3}4\)
= \(\frac{3±\sqrt 3}{2}\)
Therefore, the roots are \(\frac{3+\sqrt 3}{2}\) or\(\frac{3-\sqrt 3}{2}\).
Find the values of k for each of the following quadratic equations, so that they have two equal roots.
(i) \(2x^2 + kx + 3 = 0\) (ii) \(kx (x – 2) + 6 = 0\)
आप नव्या / भव्य हैं। विद्यालय में नामांकन के समय आपकी जन्मतिथि गलत दर्ज हो गई है। दसवीं के पंजीकरण से पहले आप इसे सुधरवाना चाहते हैं। जन्मतिथि में सुधार हेतु निवेदन करते हुए प्रधानाचार्य को लगभग 80 शब्दों में एक ई-मेल लिखिए।
Class | 0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
---|---|---|---|---|---|---|
Frequency | 11 | 8 | 15 | 7 | 10 | 9 |
From one face of a solid cube of side 14 cm, the largest possible cone is carved out. Find the volume and surface area of the remaining solid.
Use $\pi = \dfrac{22}{7}, \sqrt{5} = 2.2$
उनके द्वारा मुझे सच्चाई का अहसास कराया गया । (कर्तृवाच्य में बदलिए)