Question:

Find the missing values:
So NoBaseHeightArea of parallelogram
a.20 cm-246 \(cm^2\)
b.-15 cm154.5 \(cm^2\)
c.-8.4 cm48.72 \(cm^2\)
d.15.6 cm-16.38 \(cm^2\)

Updated On: Dec 5, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

\(Area\; of\; parallelogram = Base × Height\)
(a) \(b = 20 \;cm, \;h\) = \(?\)
\(Area = 246 \;cm^2\)
\(20 × h = 246\)

\(h\) = \(\frac{246}{20}=12.3 \;cm\)

Therefore, the height of such \(parallelogram\) is \(12.3\) \(cm\).


(b) \(b = ? \;h\)\(15 \;cm\)
\(Area\) = \(154.5\; cm^2\; b × 15\)

\(b = \frac{154.5}{15}=10.3 \;cm\)

Therefore, the base of such \(parallelogram\) is \(10.3\) \(cm\).


(c) \(b = ? \;h\) = \(8.4\; cm\; Area\) = \(48.72\; cm^2\)
\(b\times h\) = 48.72

\(b\) = \(\frac{48.72}{8.4}=5.8 \;cm\)

Therefore, the base of such \(parallelogram\) is \(5.8\) \(cm\)


(d) \(b = 15.6\; cm\; h = ?\)
\(Area = 16.38 \;cm^2\)
\(15.6 × h = 16.38\)

\(h= \frac{16.38}{15.6}=1.05\;cm\)

Therefore, the height of such \(parallelogram\) is \(1.05\) \(cm\).

Was this answer helpful?
0
0

Questions Asked in CBSE Class VII exam

View More Questions