The equation \(|z-2| = 4\) represents a circle with centre at \(z=2\) (i.e. point \((2,0)\)) and radius \(4\).
The equation \(|z-2| + |z+2| = 5\) represents an ellipse with foci at \(z=2\) and \(z=-2\).
Distance between the foci:
\[
2c = 4 \Rightarrow c=2
\]
For ellipse:
\[
2a = 5 \Rightarrow a = \frac{5}{2}
\]
Step 2: Find semi-minor axis of ellipse
\[
b = \sqrt{a^2 - c^2}
= \sqrt{\left(\frac{5}{2}\right)^2 - 2^2}
= \sqrt{\frac{25}{4} - \frac{16}{4}}
= \frac{3}{2}
\]
So the ellipse is centered at the origin with:
\[
\text{major axis endpoints at } \pm \frac{5}{2}
\]
Step 3: Determine farthest points
Farthest point on the circle from the origin lies at:
\[
x = 2 + 4 = 6
\]
Farthest point on the ellipse from the origin lies at:
\[
x = -\frac{5}{2}
\]
(opposite direction for maximum separation)