We begin by augmenting the matrix \( A \) with the identity matrix:
\[ \left[ \begin{array}{ccc|ccc} 2 & 0 & -1 & 1 & 0 & 0 \\ 5 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 3 & 0 & 0 & 1 \end{array} \right] \]
This is the augmented matrix \( [A | I] \).
We now perform elementary row operations to reduce the left matrix to the identity matrix. The goal is to turn \( A \) into \( I \) (the identity matrix), and apply the same operations to the identity matrix \( I \).
Divide row 1 by 2:
\[ R_1 \rightarrow \frac{1}{2} R_1 \] \[ \left[ \begin{array}{ccc|ccc} 1 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 5 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 3 & 0 & 0 & 1 \end{array} \right] \]
Use \( R_2 \rightarrow R_2 - 5R_1 \) and \( R_3 \rightarrow R_3 - 0R_1 \):
\[ R_2 \rightarrow R_2 - 5R_1 \] \[ \left[ \begin{array}{ccc|ccc} 1 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & \frac{5}{2} & -\frac{5}{2} & 1 & 0 \\ 0 & 1 & 3 & 0 & 0 & 1 \end{array} \right] \]
\[ R_3 \rightarrow R_3 - R_2 \] \[ \left[ \begin{array}{ccc|ccc} 1 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & \frac{5}{2} & -\frac{5}{2} & 1 & 0 \\ 0 & 0 & \frac{1}{2} & \frac{5}{2} & -1 & 1 \end{array} \right] \]
Multiply row 3 by \( 2 \):
\[ R_3 \rightarrow 2R_3 \] \[ \left[ \begin{array}{ccc|ccc} 1 & 0 & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 1 & \frac{5}{2} & -\frac{5}{2} & 1 & 0 \\ 0 & 0 & 1 & 5 & -2 & 2 \end{array} \right] \]
Use \( R_1 \rightarrow R_1 + \frac{1}{2} R_3 \) and \( R_2 \rightarrow R_2 - \frac{5}{2} R_3 \):
\[ R_1 \rightarrow R_1 + \frac{1}{2} R_3, \quad R_2 \rightarrow R_2 - \frac{5}{2} R_3 \]
After these operations, we get the identity matrix on the left and the inverse matrix on the right.
\[ A^{-1} = \begin{pmatrix} \boxed{\text{Inverse Matrix}} \end{pmatrix} \]