Find the inverse of each of the matrices(if it exists). \(\begin{bmatrix}1&0&0\\0& \cos\alpha& \sin\alpha\\0&\sin\alpha&-\cos\alpha\end{bmatrix}\)
Let A=\(\begin{bmatrix}1&0&0\\0& \cos\alpha& \sin\alpha\\0&\sin\alpha&-\cos\alpha\end{bmatrix}\)
We have,
IAI=1(-cos2α-sin2α)=-(cos2α+sin2α)
Now A11=-cos2α-sin2α=-1, A12=0, A13=0
A21=0, A22=-cosα, A23=-sinα
A31=0, A32=-sinα, A33=cosα
therefore adj A=\(\begin{bmatrix}-1&0&0\\0& -\cos\alpha& -\sin\alpha\\0&-\sin\alpha&\cos\alpha\end{bmatrix}\)
therefore A-1=\(\frac{1}{\mid A\mid}\).adj A=-\(\begin{bmatrix}-1&0&0\\0& -\cos\alpha& -\sin\alpha\\0&-\sin\alpha&\cos\alpha\end{bmatrix}\)
=\(\begin{bmatrix}1&0&0\\0& \cos\alpha& \sin\alpha\\0&\sin\alpha&-\cos\alpha\end{bmatrix}\)
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).