Question:

Find the inverse of each of the matrices(if it exists). \(\begin{bmatrix}1&0&0\\0& \cos\alpha& \sin\alpha\\0&\sin\alpha&-\cos\alpha\end{bmatrix}\)

Updated On: Aug 28, 2023
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Let A=\(\begin{bmatrix}1&0&0\\0& \cos\alpha& \sin\alpha\\0&\sin\alpha&-\cos\alpha\end{bmatrix}\)
We have,
IAI=1(-cos2α-sin2α)=-(cos2α+sin2α)
Now A11=-cos2α-sin2α=-1, A12=0, A13=0
A21=0, A22=-cosα, A23=-sinα
A31=0, A32=-sinα, A33=cosα

therefore adj A=\(\begin{bmatrix}-1&0&0\\0& -\cos\alpha& -\sin\alpha\\0&-\sin\alpha&\cos\alpha\end{bmatrix}\)

therefore A-1=\(\frac{1}{\mid A\mid}\).adj A=-\(\begin{bmatrix}-1&0&0\\0& -\cos\alpha& -\sin\alpha\\0&-\sin\alpha&\cos\alpha\end{bmatrix}\)

=\(\begin{bmatrix}1&0&0\\0& \cos\alpha& \sin\alpha\\0&\sin\alpha&-\cos\alpha\end{bmatrix}\)

Was this answer helpful?
0
0