Find the inverse of each of the matrices(if it exists). \(\begin{bmatrix}1&0&0\\0& \cos\alpha& \sin\alpha\\0&\sin\alpha&-\cos\alpha\end{bmatrix}\)
Let A=\(\begin{bmatrix}1&0&0\\0& \cos\alpha& \sin\alpha\\0&\sin\alpha&-\cos\alpha\end{bmatrix}\)
We have,
IAI=1(-cos2α-sin2α)=-(cos2α+sin2α)
Now A11=-cos2α-sin2α=-1, A12=0, A13=0
A21=0, A22=-cosα, A23=-sinα
A31=0, A32=-sinα, A33=cosα
therefore adj A=\(\begin{bmatrix}-1&0&0\\0& -\cos\alpha& -\sin\alpha\\0&-\sin\alpha&\cos\alpha\end{bmatrix}\)
therefore A-1=\(\frac{1}{\mid A\mid}\).adj A=-\(\begin{bmatrix}-1&0&0\\0& -\cos\alpha& -\sin\alpha\\0&-\sin\alpha&\cos\alpha\end{bmatrix}\)
=\(\begin{bmatrix}1&0&0\\0& \cos\alpha& \sin\alpha\\0&\sin\alpha&-\cos\alpha\end{bmatrix}\)
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to