Find the inverse of each of the matrices(if it exists). \(\begin{bmatrix}2&1&3\\4&-1&0\\-7&2&1\end{bmatrix}\)
Let A=\(\begin{bmatrix}2&1&3\\4&-1&0\\-7&2&1\end{bmatrix}\)
We have IAI=2(-1-0)-1(4-0)+3(8-7)
=-2-4+3
=-3
Now A11=-1-0=-1, A12=-(4-0), A13=8-7=1
A21=-(1-6)=5, A22=2+21=23, A23=-(-(4+7)=-11
A31=0+3=3, A32=-(0-12)=12,A33=-2-4=-6
therefore adj A=\(\begin{bmatrix}-1&5&3\\-4&23&12\\1&-11&-6\end{bmatrix}\)
so A-1=\(\frac{1}{\mid A\mid}\)adj A=\(-\frac{1}{3}\) \(\begin{bmatrix}-1&5&3\\-4&23&12\\1&-11&-6\end{bmatrix}\)
If $ A = \begin{pmatrix} 2 & 2 + p & 2 + p + q \\ 4 & 6 + 2p & 8 + 3p + 2q \\ 6 & 12 + 3p & 20 + 6p + 3q \end{pmatrix} $, then the value of $ \det(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n $, then $ m + n $ is equal to:
A settling chamber is used for the removal of discrete particulate matter from air with the following conditions. Horizontal velocity of air = 0.2 m/s; Temperature of air stream = 77°C; Specific gravity of particle to be removed = 2.65; Chamber length = 12 m; Chamber height = 2 m; Viscosity of air at 77°C = 2.1 × 10\(^{-5}\) kg/m·s; Acceleration due to gravity (g) = 9.81 m/s²; Density of air at 77°C = 1.0 kg/m³; Assume the density of water as 1000 kg/m³ and Laminar condition exists in the chamber.
The minimum size of particle that will be removed with 100% efficiency in the settling chamber (in $\mu$m is .......... (round off to one decimal place).
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: