Find the inverse of each of the matrices(if it exists). \(\begin{bmatrix}2&1&3\\4&-1&0\\-7&2&1\end{bmatrix}\)
Let A=\(\begin{bmatrix}2&1&3\\4&-1&0\\-7&2&1\end{bmatrix}\)
We have IAI=2(-1-0)-1(4-0)+3(8-7)
=-2-4+3
=-3
Now A11=-1-0=-1, A12=-(4-0), A13=8-7=1
A21=-(1-6)=5, A22=2+21=23, A23=-(-(4+7)=-11
A31=0+3=3, A32=-(0-12)=12,A33=-2-4=-6
therefore adj A=\(\begin{bmatrix}-1&5&3\\-4&23&12\\1&-11&-6\end{bmatrix}\)
so A-1=\(\frac{1}{\mid A\mid}\)adj A=\(-\frac{1}{3}\) \(\begin{bmatrix}-1&5&3\\-4&23&12\\1&-11&-6\end{bmatrix}\)
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Bittu and Chintu were partners in a firm sharing profit and losses in the ratio of 4 : 3. Their Balance Sheet as at 31st March, 2024 was as follows:
On 1st April, 2024, Diya was admitted in the firm for \( \frac{1}{7} \)th share in the profits on the following terms:
Prepare Revaluation Account and Partners' Capital Accounts.