Find the inverse of each of the matrices(if it exists). \(\begin{bmatrix}2&1&3\\4&-1&0\\-7&2&1\end{bmatrix}\)
Let A=\(\begin{bmatrix}2&1&3\\4&-1&0\\-7&2&1\end{bmatrix}\)
We have IAI=2(-1-0)-1(4-0)+3(8-7)
=-2-4+3
=-3
Now A11=-1-0=-1, A12=-(4-0), A13=8-7=1
A21=-(1-6)=5, A22=2+21=23, A23=-(-(4+7)=-11
A31=0+3=3, A32=-(0-12)=12,A33=-2-4=-6
therefore adj A=\(\begin{bmatrix}-1&5&3\\-4&23&12\\1&-11&-6\end{bmatrix}\)
so A-1=\(\frac{1}{\mid A\mid}\)adj A=\(-\frac{1}{3}\) \(\begin{bmatrix}-1&5&3\\-4&23&12\\1&-11&-6\end{bmatrix}\)
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Answer the following questions with respect to the sex determining mechanism observed in honey bee.