Find the inverse of each of the matrices (if it exists). \(\begin{bmatrix}1&0&0\\3&3&0\\5&2&-1\end{bmatrix}\)
Let A=\(\begin{bmatrix}1&0&0\\3&3&0\\5&2&-1\end{bmatrix}\)
we have IAI=1(-3-0)-0+0=-3
now A11=-3-0=-3, A12=-(-3-0)=3, A13=6-15=9
A21=-(0-0)=0, A22=-1-0=-1,A23=-(2-0)=-2
A31=0-0=0,A32=-(0-0)=0,A33=3-0=3
therefore adj A=\(\begin{bmatrix}-3&0&0\\3&-1&0\\-9&-2&3\end{bmatrix}\)
so A-1=\(\frac{1}{\mid A \mid}\)adj A=\(-\frac{1}{3}\)\(\begin{bmatrix}-3&0&0\\3&-1&0\\-9&-2&3\end{bmatrix}\)
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Bittu and Chintu were partners in a firm sharing profit and losses in the ratio of 4 : 3. Their Balance Sheet as at 31st March, 2024 was as follows:
On 1st April, 2024, Diya was admitted in the firm for \( \frac{1}{7} \)th share in the profits on the following terms:
Prepare Revaluation Account and Partners' Capital Accounts.