Step 1: Find the derivative of \( f(x) \)
The given function is \( f(x) = \frac{\log x}{x} \). Differentiate using the quotient rule: \[ f'(x) = \frac{x \cdot \frac{1}{x} - \log x \cdot 1}{x^2} = \frac{1 - \log x}{x^2}. \]
Step 2: Find critical points
For \( f'(x) = 0 \): \[ 1 - \log x = 0 \implies \log x = 1 \implies x = e. \]
Step 3: Determine intervals of increase and decrease
For \( x \in (0, e) \): \[ 1 - \log x>0 \implies f'(x)>0 \quad {(strictly increasing)}. \] For \( x \in (e, \infty) \): \[ 1 - \log x<0 \implies f'(x)<0 \quad {(strictly decreasing)}. \]
Step 4: Conclude the result
The function is strictly increasing on \( (0, e) \) and strictly decreasing on \( (e, \infty) \).
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: