>
Exams
>
Mathematics
>
Integration
>
find the integral of frac sqrt x 1 2 x sqrt x 2x s
Question:
Find the integral of
\( \frac{(\sqrt{x+1})^2}{x\sqrt{x + 2x + \sqrt{x}}} \).
Show Hint
For complex integrals, simplify the expression first by combining like terms or using substitution methods.
Bihar Board XII - 2025
Bihar Board XII
Updated On:
Sep 13, 2025
\( \sqrt{x} + k \)
\( \frac{1}{2} \sqrt{x} + k \)
\( 2 \sqrt{x} + k \)
\( 2x + k \)
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
To integrate the given expression, we use standard integration techniques for rational and square-root functions. The result simplifies to: \[ \int \frac{(\sqrt{x+1})^2}{x\sqrt{x + 2x + \sqrt{x}}} dx = 2 \sqrt{x} + k. \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Integration
Find the integral:
\[ \int e^{3x} \, dx \]
Bihar Board XII - 2025
Mathematics
Integration
View Solution
Find the integral:
\[ \int x^m \cdot x^n \, dx \]
Bihar Board XII - 2025
Mathematics
Integration
View Solution
Evaluate the integral:
\[ \int e^{2x} \, dx \]
Bihar Board XII - 2025
Mathematics
Integration
View Solution
Find the integral of
\( e^x \) from 0 to 2.
Bihar Board XII - 2025
Mathematics
Integration
View Solution
Find the integral of
\( \sin^{13} x \cos^{12} x \).
Bihar Board XII - 2025
Mathematics
Integration
View Solution
View More Questions
Questions Asked in Bihar Board XII exam
Find \( \tan^{-1} (\sqrt{3}) - \cot^{-1} (-\sqrt{3}) \).
Bihar Board XII - 2025
Inverse Trigonometric Functions
View Solution
Find \( \sin \left( \sin^{-1} \frac{2}{3} \right) + \tan^{-1} \left( \tan \frac{3\pi}{4} \right) \).
Bihar Board XII - 2025
Inverse Trigonometric Functions
View Solution
Find \( \tan^{-1} \left( \frac{1}{2} \right) + \tan^{-1} \left( \frac{1}{3} \right) \).
Bihar Board XII - 2025
Inverse Trigonometric Functions
View Solution
If \( \sin \left( \sin^{-1} \frac{1}{5} \right) + \cos^{-1} x = 1 \), find \( x \).
Bihar Board XII - 2025
Inverse Trigonometric Functions
View Solution
Multiply the matrices:
\[ \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix} \right] \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] \]
Bihar Board XII - 2025
Matrix Operations
View Solution
View More Questions