>
Exams
>
Mathematics
>
Integration
>
find the integral int x m cdot x n dx
Question:
Find the integral:
\[ \int x^m \cdot x^n \, dx \]
Show Hint
When multiplying powers of \( x \), add the exponents before integrating.
Bihar Board XII - 2025
Bihar Board XII
Updated On:
Sep 13, 2025
\( \frac{x^{m+n+1}}{m+n+2} + k \)
\( \frac{x^{m+n}}{m+n} + k \)
\( \frac{x^{m+n+1}}{m+n+1} + k \)
\( (m+n) x^{m+n-1} + k \)
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
The given integral is \( \int x^m \cdot x^n \, dx \). First, simplify the integrand: \[ x^m \cdot x^n = x^{m+n}. \] Now, integrate \( x^{m+n} \): \[ \int x^{m+n} \, dx = \frac{x^{m+n+1}}{m+n+1} + k. \] Thus, the correct answer is option (C).
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Integration
Find the integral:
\[ \int e^{3x} \, dx \]
Bihar Board XII - 2025
Mathematics
Integration
View Solution
Evaluate the integral:
\[ \int e^{2x} \, dx \]
Bihar Board XII - 2025
Mathematics
Integration
View Solution
Find the integral of
\( e^x \) from 0 to 2.
Bihar Board XII - 2025
Mathematics
Integration
View Solution
Find the integral of
\( \frac{(\sqrt{x+1})^2}{x\sqrt{x + 2x + \sqrt{x}}} \).
Bihar Board XII - 2025
Mathematics
Integration
View Solution
Find the integral of
\( 2x + 1 \).
Bihar Board XII - 2025
Mathematics
Integration
View Solution
View More Questions
Questions Asked in Bihar Board XII exam
Find \( \tan^{-1} (\sqrt{3}) - \cot^{-1} (-\sqrt{3}) \).
Bihar Board XII - 2025
Inverse Trigonometric Functions
View Solution
Find \( \sin \left( \sin^{-1} \frac{2}{3} \right) + \tan^{-1} \left( \tan \frac{3\pi}{4} \right) \).
Bihar Board XII - 2025
Inverse Trigonometric Functions
View Solution
Find \( \tan^{-1} \left( \frac{1}{2} \right) + \tan^{-1} \left( \frac{1}{3} \right) \).
Bihar Board XII - 2025
Inverse Trigonometric Functions
View Solution
If \( \sin \left( \sin^{-1} \frac{1}{5} \right) + \cos^{-1} x = 1 \), find \( x \).
Bihar Board XII - 2025
Inverse Trigonometric Functions
View Solution
Multiply the matrices:
\[ \left[ \begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix} \right] \left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] \]
Bihar Board XII - 2025
Matrix Operations
View Solution
View More Questions