Find the general solution of the differential equation:
\(\frac {dy}{dx}+\sqrt {\frac {1-y^2}{1-x^2}}=0\)
\(\frac {dy}{dx}+\sqrt {\frac {1-y^2}{1-x^2}}=0\)
⇒\(\frac {dy}{dx}=-\sqrt {\frac {1-y^2}{1-x^2}}\)
⇒\(\frac {dy}{\sqrt {1-y^2}}=-\frac {dx}{\sqrt {1-x^2}}\)
Integrating both sides, we get:
\(sin^{-1}y=-sin^{-1}x+C\)
⇒\(sin^{-1}x+sin^{-1}y=C\)
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Complete and balance the following chemical equations: (a) \[ 2MnO_4^-(aq) + 10I^-(aq) + 16H^+(aq) \rightarrow \] (b) \[ Cr_2O_7^{2-}(aq) + 6Fe^{2+}(aq) + 14H^+(aq) \rightarrow \]