Step 1: Write the differential equation.
\[
\frac{dy}{dx} = \frac{2x}{y^2}.
\]
Step 2: Separate variables.
\[
y^2 \, dy = 2x \, dx.
\]
Step 3: Integrate both sides.
\[
\int y^2 \, dy = \int 2x \, dx.
\]
\[
\frac{y^3}{3} = x^2 + C.
\]
So,
\[
y^3 = 3x^2 + C'.
\]
Step 4: Use initial condition.
Point $(-2,3)$ lies on the curve. Substitute:
\[
3^3 = 3(-2)^2 + C' $\Rightarrow$ 27 = 12 + C' $\Rightarrow$ C' = 15.
\]
Step 5: Final equation of curve.
\[
y^3 = 3x^2 + 15.
\]
Final Answer: \[ \boxed{y^3 = 3x^2 + 15} \]
Solve the differential equation \[ (x + y) \, dy + (x - y) \, dx = 0, \quad \text{if} \quad y = 1 \text{ when } x = 1. \]
Find the particular solution of the differential equation: \[ \frac{dy}{dx} + y \cot x = 4x \csc x \text{(} x \neq 0 \text{)}. \] Given that \( y = 0 \) \(\text{ when}\) \( x = \frac{\pi}{2} \).