Step 1: Domain of the sine inverse function.
The sine inverse function \( \sin^{-1}(y) \) is defined for \( -1 \leq y \leq 1 \). Therefore, for \( f(x) = \sin^{-1}(x^2 - 4) \), the argument \( x^2 - 4 \) must satisfy:
\[
-1 \leq x^2 - 4 \leq 1.
\]
Step 2: Solve the inequality.
Rewrite the inequality:
\[
-1 + 4 \leq x^2 \leq 1 + 4 \quad \Rightarrow \quad 3 \leq x^2 \leq 5.
\]
Taking the square root on both sides:
\[
\sqrt{3} \leq |x| \leq \sqrt{5}.
\]
This implies:
\[
x \in [-\sqrt{5}, -\sqrt{3}] \cup [\sqrt{3}, \sqrt{5}].
\]
Step 3: Domain of \( f(x) \).
The domain of \( f(x) \) is:
\[
\boxed{x \in [-\sqrt{5}, -\sqrt{3}] \cup [\sqrt{3}, \sqrt{5}]}.
\]
Step 4: Range of \( f(x) \).
The range of the sine inverse function is \( [-\frac{\pi}{2}, \frac{\pi}{2}] \). Since \( x^2 - 4 \) varies between \( -1 \) and \( 1 \), the range of \( f(x) \) is:
\[
\boxed{[-\frac{\pi}{2}, \frac{\pi}{2}]}.
\]