Direction ratios: \( \mathbf{a} = (-2, 1, -1) \), \( \mathbf{b} = (-3, -4, 1) \). A vector perpendicular to both is given by their cross product:
\[
\mathbf{a} \times \mathbf{b} = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
-2 & 1 & -\\
-3 & -4 & 1
\end{vmatrix} = \hat{i}(1 \cdot 1 - (-1) \cdot (-4)) - \hat{j}((-2) \cdot 1 - (-1) \cdot (-3)) + \hat{k}((-2) \cdot (-4) - 1 \cdot (-3)).
\]
\[
= \hat{i}(1 - 4) - \hat{j}(-2 - 3) + \hat{k}(8 + 3) = (-3, 5, 11).
\]
Direction ratios: \( (-3, 5, 11) \).