Step 1: The direction ratios of the two lines are \( \mathbf{l_1} = (-2, 1, -1) \) and \( \mathbf{l_2} = (-3, -4, 1) \).
Step 2: To find the direction ratios of the vector perpendicular to both lines, we take the cross product of \( \mathbf{l_1} \) and \( \mathbf{l_2} \). The cross product is given by:
\[
\mathbf{l_1} \times \mathbf{l_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k}
-2 & 1 & -1
-3 & -4 & 1 \end{vmatrix}
\]
Step 3: Compute the determinant:
\[
\mathbf{l_1} \times \mathbf{l_2} = \hat{i} \begin{vmatrix} 1 & -1
-4 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} -2 & -1
-3 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} -2 & 1
-3 & -4 \end{vmatrix}
\]
Step 4: Calculate the 2x2 determinants:
\[
\hat{i} \left( (1)(1) - (-1)(-4) \right) = \hat{i} (1 - 4) = -3 \hat{i}
\]
\[
-\hat{j} \left( (-2)(1) - (-1)(-3) \right) = -\hat{j} (-2 - 3) = 5 \hat{j}
\]
\[
\hat{k} \left( (-2)(-4) - (1)(-3) \right) = \hat{k} (8 + 3) = 11 \hat{k}
\]
Step 5: The cross product is:
\[
\mathbf{l_1} \times \mathbf{l_2} = -3 \hat{i} + 5 \hat{j} + 11 \hat{k}
\]
Thus, the direction ratios of the perpendicular vector are:
\[
\boxed{-3, 5, 11}
\]