First, find the magnitude of the vector:
\[
|\vec{v}| = \sqrt{3^2 + (-4)^2 + 12^2} = \sqrt{9 + 16 + 144} = \sqrt{169} = 13.
\]
The direction cosines are given by:
\[
\cos \alpha = \frac{3}{13}, \quad \cos \beta = \frac{-4}{13}, \quad \cos \gamma = \frac{12}{13}.
\]
Final answer:
\[
\boxed{
\left( \frac{3}{13}, \; -\frac{4}{13}, \; \frac{12}{13} \right).
}
\]