Step 1: Let the expression be \( y = \tan^{-1}\left( \frac{2x}{1-x^2} \right) \).
Using the chain rule, we differentiate with respect to \( x \).
\[
\frac{dy}{dx} = \frac{1}{1 + \left( \frac{2x}{1-x^2} \right)^2} . \frac{d}{dx}\left( \frac{2x}{1-x^2} \right)
\]
Step 2: Differentiating \( \frac{2x}{1-x^2} \).
Using the quotient rule:
\[
\frac{d}{dx}\left( \frac{2x}{1-x^2} \right) = \frac{(1-x^2) . 2 - 2x . (-2x)}{(1-x^2)^2} = \frac{2 - 2x^2 + 4x^2}{(1-x^2)^2} = \frac{2 + 2x^2}{(1-x^2)^2}
\]
Step 3: Simplifying the expression.
Substitute this into the derivative:
\[
\frac{dy}{dx} = \frac{1}{1 + \left( \frac{2x}{1-x^2} \right)^2} . \frac{2 + 2x^2}{(1-x^2)^2}
\]
Now, simplify the denominator. We know that:
\[
1 + \left( \frac{2x}{1-x^2} \right)^2 = \frac{(1-x^2)^2 + 4x^2}{(1-x^2)^2}
\]
Thus, the derivative is:
\[
\frac{dy}{dx} = \frac{2 + 2x^2}{(1-x^2)^2 + 4x^2}
\]
Final Answer:
\[
\boxed{\frac{dy}{dx} = \frac{2 + 2x^2}{(1-x^2)^2 + 4x^2}}
\]