Let \( f(x) = x^2 - 2 \)
\( f'(x) = \frac{d(x^2 - 2)}{dx} \)
\( = 2x - 0 \)
\( = 2x \)
So, \( f'(x) = 2x \)
\( f'(10) = 2 \times 10 \)
\( = 20 \)
If $y = 5 \cos x - 3 \sin x$, prove that $\frac{d^2y}{dx^2} + y = 0$.
Show that \( f(x) = \tan^{-1}(\sin x + \cos x) \) is an increasing function in \( \left[ 0, \frac{\pi}{4} \right] \).