The formula for the cross product is: \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}. \]
Given: \[ \vec{A} = (1, 3, -2), \quad \vec{B} = (-1, 0, 3). \]
Substitute these values into the determinant: \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & -2 \\ -1 & 0 & 3 \end{vmatrix}. \]
Expanding the determinant: \[ \vec{A} \times \vec{B} = \hat{i} \begin{vmatrix} 3 & -2 \\ 0 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -2 \\ -1 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 3 \\ -1 & 0 \end{vmatrix}. \]
Compute each minor determinant: \[ = \hat{i}[(3)(3) - (-2)(0)] - \hat{j}[(1)(3) - (-2)(-1)] + \hat{k}[(1)(0) - (3)(-1)]. \]
Simplify: \[ = \hat{i}(9) - \hat{j}(3 - 2) + \hat{k}(0 + 3). \]
Hence, \[ \boxed{ \vec{A} \times \vec{B} = 9\hat{i} - \hat{j} + 3\hat{k}. } \]
Final Answer:
\( \vec{A} \times \vec{B} = 9\hat{i} - \hat{j} + 3\hat{k} \)
Let $\vec{a}$ and $\vec{c}$ be unit vectors such that the angle between them is $\cos^{-1} \left( \frac{1}{4} \right)$. If $\vec{b} = 2\vec{c} + \lambda \vec{a}$. Where $\lambda > 0$ and $|\vec{b}| = 4$, then $\lambda$ is equal to:
If \( \mathbf{a} = \hat{i} + \hat{j} + \hat{k}, \, \mathbf{b} = 2\hat{i} - \hat{j} + 3\hat{k}, \, \mathbf{c} = \hat{i} - 2\hat{j} + \hat{k} \), \(\text{ then a vector of magnitude }\) \( \sqrt{22} \) \(\text{ which is parallel to }\) \( 2\mathbf{a} - \mathbf{b} + \mathbf{c} \) is:
If $\vec{a}$ and $\vec{b}$ are two vectors such that $|\vec{a}| = 3$, $|\vec{b}| = 4$ and $|\vec{a} + \vec{b}| = 1$, then the value of $|\vec{a} \times \vec{b}|$ is:
If $\vec{a}$, $\vec{b}$ and $\vec{c}$ are three vectors such that $\vec{a} \times \vec{b} = \vec{c}$, $\vec{a} \cdot \vec{c} = 2$ and $\vec{b} \cdot \vec{c} = 1$. If $|\vec{b}| = 1$, then the value of $|\vec{a}|$ is: