Concept:
\( \mathrm{H_2X} \) is a diprotic weak acid:
\[
\mathrm{H_2X \rightleftharpoons H^+ + HX^-} \quad (K_{a1})
\]
\[
\mathrm{HX^- \rightleftharpoons H^+ + X^{2-}} \quad (K_{a2})
\]
Since:
\[
K_{a2} \ll K_{a1}
\]
the second dissociation is highly suppressed.
Step 1: Hydrogen ion concentration from first dissociation
For the first dissociation:
\[
[\mathrm{H^+}] \approx \sqrt{K_{a1} \cdot C}
\]
\[
[\mathrm{H^+}] \approx \sqrt{(2.5 \times 10^{-7})(0.1)}
= \sqrt{2.5 \times 10^{-8}}
= 5 \times 10^{-4}
\]
Step 2: Expression for \( \mathrm{X^{2-}} \)
For the second dissociation:
\[
K_{a2} = \frac{[\mathrm{H^+}][\mathrm{X^{2-}}]}{[\mathrm{HX^-}]}
\]
But from the first dissociation:
\[
[\mathrm{HX^-}] \approx [\mathrm{H^+}]
\]
Hence,
\[
[\mathrm{X^{2-}}] \approx K_{a2}
\]
Step 3: Substitute value
\[
[\mathrm{X^{2-}}] = 1 \times 10^{-13}\,\mathrm{M}
\]
Final Answer:
\[
\boxed{1 \times 10^{-13}}
\]