Find the area of the smaller part of the circle x2+y2=a2 cut off by the line x=a/√2
The area of the smaller part of the circle,x2+y2=a2,cut off by the line,x=a/√2,is the
area ABCDA.
It can be observed that the area ABCD is symmetrical about x-axis.
∴Area ABCD=2×Area ABC
Area of ABC=∫aa/√2ydx
=∫aa/√2√a2-x2dx
=[x/2√a2-x2+a2/2sin-1x/a]aa/√2
=[a2/2(π/2)-2a/2√2√a2-a2/2-a2/2sin(1/√2)]
=a2π/4-a/2√2.a/√2-a2/2(π/4)
=a2π/4-a2/4-a2π/8
=a2/4[π-1-π/2]
=a2/4[π/2-1]
⇒Area ABCD=2[a2/4(π/2-1)]=a2/2(π/2-1)
Therefore,the area of smaller part of the circle,x2+y2=a2,cut off by the line,x=a/√2,
is a2/2(π/2-1)units.
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
Complete and balance the following chemical equations: (a) \[ 2MnO_4^-(aq) + 10I^-(aq) + 16H^+(aq) \rightarrow \] (b) \[ Cr_2O_7^{2-}(aq) + 6Fe^{2+}(aq) + 14H^+(aq) \rightarrow \]
Balance Sheet of Chandan, Deepak and Elvish as at 31st March, 2024
Liabilities | Amount (₹) | Assets | Amount (₹) |
---|---|---|---|
Capitals: | Fixed Assets | 27,00,000 | |
Chandan | 7,00,000 | Stock | 3,00,000 |
Deepak | 5,00,000 | Debtors | 2,00,000 |
Elvish | 3,00,000 | Cash | 1,00,000 |
General Reserve | 4,50,000 | ||
Creditors | 13,50,000 | ||
Total | 33,00,000 | Total | 33,00,000 |