Find the area of the region bounded by the parabola y=x2 and y=|x|
The area bounded by the parabola,x2=y and the line,y=|x|,can be represented as
The given area is symmetrical about y-axis.
∴Area OACO=Area ODBO
The point of intersection of parabola,x2=y,and line,y=x,is A(1,1).
Area of ΔOAB=1/2×OB×AB=1/2×1×1=1/2
Area of OBACO=∫10ydx=∫10x2dx=[x3/3]10=1/3
⇒Area of OACO=Area of ΔOAB-Area of OBACO
=1/2-1/3
=1/6
Therefore,required area=2[1/6]=1/3units.
If \( S \) and \( S' \) are the foci of the ellipse \[ \frac{x^2}{18} + \frac{y^2}{9} = 1 \] and \( P \) is a point on the ellipse, then \[ \min (SP \cdot S'P) + \max (SP \cdot S'P) \] is equal to:
Let one focus of the hyperbola \( H : \dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1 \) be at \( (\sqrt{10}, 0) \) and the corresponding directrix be \( x = \dfrac{9}{\sqrt{10}} \). If \( e \) and \( l \) respectively are the eccentricity and the length of the latus rectum of \( H \), then \( 9 \left(e^2 + l \right) \) is equal to:
मोबाइल फोन विहीन दुनिया — 120 शब्दों में रचनात्मक लेख लिखिए :