To find the area between the curve \( y = x^2 \) and the line \( y = 4 \), we first find the points of intersection.
Set \( x^2 = 4 \), which gives:
\[
x = \pm 2
\]
Thus, the points of intersection are \( x = -2 \) and \( x = 2 \).
The area is given by the integral:
\[
\text{Area} = \int_{-2}^{2} \left( 4 - x^2 \right) \, dx
\]
Now, compute the integral:
\[
\int (4 - x^2) \, dx = 4x - \frac{x^3}{3}
\]
Substitute the limits:
\[
\text{Area} = \left[ 4x - \frac{x^3}{3} \right]_{-2}^{2} = \left( 4(2) - \frac{(2)^3}{3} \right) - \left( 4(-2) - \frac{(-2)^3}{3} \right)
\]
Simplifying:
\[
\text{Area} = \left( 8 - \frac{8}{3} \right) - \left( -8 + \frac{8}{3} \right) = 8 - \frac{8}{3} + 8 - \frac{8}{3} = 16 - \frac{16}{3}
\]
Thus, the area is:
\[
\text{Area} = \frac{48}{3} - \frac{16}{3} = \frac{32}{3}
\]
The area of the region is:
\[
\boxed{\frac{32}{3}}
\]