The given equation \( y^2 = 4x \) is a parabola. To find the area, we first express \( y \) as:
\[
y = \sqrt{4x} = 2\sqrt{x}
\]
The area is given by the integral of \( y \) from \( x = 1 \) to \( x = 4 \):
\[
\text{Area} = \int_1^4 2\sqrt{x} \, dx
\]
Now, compute the integral:
\[
\int 2\sqrt{x} \, dx = 2 \cdot \frac{2}{3} x^{3/2} = \frac{4}{3} x^{3/2}
\]
Substitute the limits:
\[
\text{Area} = \frac{4}{3} \left[ x^{3/2} \right]_1^4 = \frac{4}{3} \left( 4^{3/2} - 1^{3/2} \right)
\]
Now calculate the values:
\[
4^{3/2} = 8, \quad 1^{3/2} = 1
\]
Thus, the area is:
\[
\text{Area} = \frac{4}{3} \left( 8 - 1 \right) = \frac{4}{3} \times 7 = \frac{28}{3}
\]
The area of the region is:
\[
\boxed{\frac{28}{3}}
\]