Find the area bounded by the curve $x = 2 - y - y^2$ and y-axis.
Updated On: Jul 6, 2022
$-\frac{9}{2}$
$\frac{9}{2}$
$9$
$-9$
Hide Solution
Verified By Collegedunia
The Correct Option isB
Solution and Explanation
Put $2 - y - y^2 = 0$$\Rightarrow y = 1, - 2$
This means, the curve intersects the y-axis at $y = 1$ and $y = - 2$.
Hence required area $= \int\limits^{1}_{-2} xdy$$= \int\limits^{1}_{-2} \left(2-y-y^{2}\right)dy$$= \left[2y-\frac{y^{2}}{2}-\frac{y^{3}}{3}\right]^{1}_{-2} = \frac{9}{2}$ s units